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An equation valid in the region where the partially frozen Mach 

number is near unity is derived for the flow of a gas which is ir. dis- 

sociational nonequilibrium but where vibration and rotation a r e  in 

equilibrium with translation (partially excited). From the solution of 

this  equation for nozzle flows, it is shown that the constant velocity 

curves in the sonic region are  parabolic, and thus a parabolic a rc  can 

be taken as the initial data curve- for supersonic flow computations 

when using the method of characteristics. 

characteristic, the partially frozen sonic line and the line of horizontal 

velocity a r e  all shown to be parabolic. The results are valid for slight 

The curves of the limiting 

departures from equilibrium. f i h C 1 1 0 7  
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I .  

ntroduct ion: . 
It is well known that .in supersonic reacting gas flows in non- 

equilibrium, the flow field can be komputed by the method of charac- 

teristics when the flow parameters on an initial data curve are given 
I '  

(Refs. 1-5). In these computations the frozen Mach number plays a 

role similar to that of the usual Mach number in non-reacting flows. 

The computation of supersonic flows in a de Lava1 nozzle is in general 

carried out by taking the initial data curve a s  a line perpendicular to  

the nozzle axis at a point where the frozen Mach number is slightly 

greater than unity (Refs. 6,7). 

obtained by a quasi-one dimensional analysis up to  this point and a re  

The flow parameters at this point a r e  

assumed to be constant on this initial data curve. 

given for taking the initial data curve to  be of this shape. Also in the 

inverse nozzle problem, it would be of interest to  know which part of 

the nozzle could be modified without affecting the upstream flow. 

this note it is proposed to  answer  these questions by studying the flow 

in the partially frozen sonic region (i,  e, , the region where the partially 

frozen Mach number is near unity). 

An a1 y si s : 

No justification is 

In 

The analysis is resticted t o  a steady two-dimensional flow of a 

pure diatomic gas such as 02 giving a binary mixture of atoms and 

molecules. 

while the vibrational and rotational modes a re  in equilibrium with trans- 

lation. The dissociafional ra te  equation czn be  shown to be (Ref. 8)  

\ 

It is assumed that only dissociation is out of equilibrium 

. 
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where 

4 
7 -  - q .  grad 
Dt 

p, P ,a, T, a re  the pressure, density, dissociated mass  fraction, 

temperature and velocity, respectively. : It may be noted that 1/'Ly has 

the dimensions of time, and L = 0 for dissociational equilibrium. Kc 

is the equilibrium constant and is the ratio of the dissociation and re -  

combination rate constants kd and kr, which a re  functions of temperature 

only and, ma is the mass of atoms per unit mole. 

Let the flow be a perturbation from a reference state, which may 

or may not be in equilibrium and therefore 

p = p* (l+p') 

P = e *  ( i + e l )  (4) 

where the starred and primed quantities correspond to the reference 
" 

state values and pepturbations, respectively. Then the product W L 

.may be  expanded in a Taylor ser ies  about this reference state as 

where subscripts denote differentiation. - 



Thus 

By defining a local equilibriyrn value 01, of OC by 

one obtains 

Substituting these in Eq. (6) gives 

From the energy equation 

D h . - L D p = O  
Dt Dt 

where h = h(p,Q ,a) is the enthalpy, one obtains, 

Substituting for Dol/Dt from Eq. (11) on both sides of Eq. (9) and using 

the continuity and momentum equations 

__ 
f 7 0 \  
\ A L I  ge + Qdiv;  = 0 

Et 

one obtains, 



* '  
and the partially frozen and equilibrium speeds of sound af and a, a re  

defined in Ref. 5 and a re  given by 
* \  

a;2 = -(h - l j ~ )  /hp  (16) P 

(17) a'2 = -(h + hdo( - -) I / (hp + h,OLep) 
e P eP Q 

For flows with constant total enthalpy, one obtains f rom Eqs. (101, (131, 

(18) h + q2/2 = constant = hgc + 9'g2/2 
- 

where h may be replaced in te rms  of af2 and ae2 as  

(19) 2h = A af2 = B ae2 

with A and B given by. 

&" = e " / (  pr.- 1 )  

Qv, Boare the characteristic temperatures for dissociation and vibration, 

5, and Te in the above expressions a re  the partially frozen and equili- 

brium isentropic exponents, similar to T for non-reacting gas flows 

(Ref. 3) .  However, y+ and xe are not constant. From Eqs. (18) and 

(19), one obtains the following relations between the flow speed and 

partially frozen and equilibrium sound speeds 
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where Bf* is the value of B evaluqted at q' = a f* .  

Transonic equation for reacting gas flows: 

For flows which a r e  slightly out of equilibrium, it may be shown 

(Ref. 8) that the flow can be considered to be nearly isentropic, and 

hence one may introduce a pexturbation velocity potential cp such that 
\ 

\ 

qx = q* + ut = af* + qs (24) 

CPV qy = v' = 

where the reference state is now that corresponding to  q"' = af"'. 

more, in the transonic region (where the partially frozen Mach number 

F'urther- 

is near unity) one may derive a simplified equation from Eq. (14) by 

the following transformation, (See Ref. 8 for details): I 

s = p x  

where is a perturbation parameter that can be related to the quantity 

E / H, 4 . E k e  E = Ii 0 /E  0. where Ho is the height of the nozzle at the 

throat, and Ro is the radius of curvature at the throat ; 

sociational relaxation length and 

I / 'is the dis- 

is given by 
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. In the limits of equilibrium and frozen flows, e, tends to  - 03 and 0, 

r e  sp e c t iv ely . c ‘  

& 

‘ 1  Also by writing 

P = P* (1 +Tpl )  

Q = e* (1 + ~ p q  

oc = a* (1 +Tal) 

one can show that 

A = ‘  A” (1 +?‘AI) 

(27) 
/ 

where AI, BI, Rlt, R2t a r e  at most order unity (Ref. 8) .  Substituting 

from Eqs. (22) through (28)  in Eq. (14) and simplifying, one obtains, 

where -1- 0 (r3) = 0 

P = 2(A4‘+1) /A* 

M = 1 - (af*/ae*)2 = 1 - Bf*/A* (30) 

To order  7 , this gives 
- 

or  

where f (7) is a function of 7 alone showing that t o  this order is 
‘s 
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a function of 7 alone. But in general, the parameter M is of order 7. 

2 L '  

* Thus to order ?' , one has 

or  in the x,y coordinates, 

This is the transonic equation for reacting gas  flows valid in the region 

where the partially frozen Mach number is near unity. 

Solution for nozzle flows: 

Consider a nozzle symmetric with respect to  the nozzle center- 

line taken as the x-axis. The perturbation velocity potential may be 

expanded as a polynomial in y in which the coefficients a r e  functions 

of x. 

only even powers of y will  appear, thus 

Because of the asymmetry of the y component of the velocity, 

In the sonic region, one can write 

cp,.(x) = c x 
h 

(34) 

(35) 

where c is a positive constant, and the origin is taken as the sonic 

' point. 

Eq. (35), one obtains 

By substituting 9 (x,y) from Eq.. (34)"in Eq. (33) and using 

' where AI and A are integration constants. 2 
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For flows which are  very near equilibrium, is very large 
\ i A '  

and negative. Thus neglecting the exponential t e rms  in @ , one has ,' 
z c  x2 /2 f y2 / 2  ( (N-P)c2/a  - Mc + Nc x + ~ ~ c 3 y ~ / 2 4  (37)  

(38) 

(39) 

y (x, Y) 2 l  
vy = y { (N-P)c2/g -Mc + Nc2x} + N2c3y3/6 

c Q x  = cx+Nc2y2/2  5 ,  

Since the y component of the velocity is of higher order than the x 

component, the curves of constant velocity q s  af + qs a r e  seen to be 

parabolic. 

by the method of cha'racteristics can be taken a s  a parabolic a rc  with 

* 

Thus the initial data curve for supersonic flow computations 

constant flow properties on this curve. The partially frozen sonic line 

and the curve of horizontal velocity a re  given by Cpx = 'py = 0, re- 

spec t iv ely, - 

Sonic line: 0 = x + Ncy2/2 (40) 

Horizontal velocity curve: 0 = x - (1 + Pc /  p ) + Ncy2/6 (41) 
Nc 

Eqs. (40), (41) show that these two curves do not meet on the axis a s  

they do in perfect gas flows, The point where the line of horizontal 

velocity meets the x axis is give-n by 

(42 j 

It wil l  be seen that x* is upstream of the sonic point since M is negative. 

The displacement of the sonic point from the geometric throat is ob-, 

Thus XT' tained by noting that (p = 0 for y = % and x = Y 
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where x is the abscissa of the throat and Ho is the height at the throat, T 
. . '  

I If the sonic line and line of horizontal velocity cross,  this crossover 

a 

point is given by the solution of Eqs (40) and (41) for x,y. 
, (  

This point is, 
b' 

x = (3M/2Nc) ( l + P c / g  ) = 3x*/2 
C 

yc = [-3M(l+Pc/ f3 )I v 2 /Nc = (-3x*/Nc) '/ 2 (44) 

Limiting characteristics: 

For reacting gas flows, the characteristics a re  the frozen Mach 

lines and their slopes a re  given as '  (in this case partially frozen characteristics) 

*dy/dx = tan ( €3 f, p ) (45) 

where 8 is the flow angle and 

In the sonic region, if the nozzle contour is sufficiently smooth and 

is the Mach angle defined by sinp = l / M f .  

slowly varying, 8 will  be small compared to and hencenusing Eq. 22 

dy/dx $8 2 t anp=+(Mf2 - 1)-'I2 = f (P px) -"' (46) 

BY Uskg the solution for  (p x obtained earlier (Eq. (38)  ), Eq. (46) 

can be integrated to obtain the characteristic curves. 

The characteristic which meets the sonic line on the axis divides 

the supersonic flow into two regions: I. that region wherein the charac- 

ter is t ics  emanating from the wall reflect on the sonic line and thus could 

affect the subsonic region and If\ the purely supersonic region, which 

does not affect the subsonic region:\, The two characteristics that pass 

through the sonic point on the axis are given by 

'\ 

(. 

\\ 

'\ 

x - (Pcy2/8) [l (1 + 8N/P/'2] = 0 ' (47) 
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It will be seen that these a re  parabolic. 

through which the limiting characteristic passes can be obtained by 

solving the wall  equation 

The point on the nozzle wall  

* f  

Y = Yw(x) L' (48) 

and the left running characteristic equation 

8x - Pcy2 [1 - (1 + 8 N / P )  Y2-j = o  (49) 

As an illustration, the flow of pure dissociated oxygen through 

a parabolic nozzle with reservoir conditions To = 5900°K and po = 82 atm. 

is calculated for a case for which quasi-one dimensional results were 

available. The results are presented in Fig. 1. The reference state 

values and the constant c in Eq. (35)  were obtained from the quasi-one 

dimensional results. 

i 

- ~~ x- 

\ 

It appears from a rough analysis that even if vibratibnal nonequi- 

librium were taken into account, the qualitative picture of the flow field 

would be very similar with the fully frozen Mach number replacing the 

\ 

partially frozen Mach number of the present note. 

a 
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